Tampilkan postingan dengan label Biologi SMA XII. Tampilkan semua postingan
Tampilkan postingan dengan label Biologi SMA XII. Tampilkan semua postingan
Rabu, 02 Mei 2012
metebolisme dan katabolisme
Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah. Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa sumber. Bila pembongkaran suatu zat dalam lingkungan cukup oksigen (aerob) disebut proses respirad, bila dalam lingkungan tanpa oksigen (anaerob) disebut fermentasi.
Contoh Respirasi : C6H12O6 + O2 ——————> 6CO2 + 6H2O + 688KKal.
(glukosa)
Contoh Fermentasi :C6H1206 ——————> 2C2H5OH + 2CO2 + Energi.
(glukosa) (etanol)
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
1. Fotosintesis
Arti fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).
Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.
Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.
Untuk membuktikan bahwa dalam fotosintesis diperlukan energi cahaya matahari, dapat dilakukan percobaan Ingenhousz.
2. Pigmen Fotosintesis
Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil / pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari.
Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma.
Faktor-faktor yang berpengaruh terhadap pembentukan klorofil antara lain :
1. Gen :
bila gen untuk klorofil tidak ada maka tanaman tidak akan memiliki
klorofil.
2. Cahaya :
beberapa tanaman dalam pembentukan klorofil memerlukan cahaya,
tanaman lain tidak memerlukan cahaya.
3. Unsur N. Mg, Fe :
merupakan unsur-unsur pembentuk dan katalis dalam sintesis klorofil.
4. Air :
bila kekurangan air akan terjadi desintegrasi klorofil.
Pada tabun 1937 : Robin Hill mengemukakan bahwa cahaya matahari yang ditangkap oleh klorofil digunakan untak memecahkan air menjadi hidrogen dan oksigen. Peristiwa ini disebut fotolisis (reaksi terang).
H2 yang terlepas akan diikat oleh NADP dan terbentuklah NADPH2, sedang O2 tetap dalam keadaan bebas. Menurut Blackman (1905) akan terjadi penyusutan CO2 oleh H2 yang dibawa oleh NADP tanpa menggunakan cahaya. Peristiwa ini disebut reaksi gelap NADPH2 akan bereaksi dengan CO2 dalam bentuk H+ menjadi CH20.
CO2 + 2 NADPH2 + O2 ————> 2 NADP + H2 + CO+ O + H2 + O2
Ringkasnya :
Reaksi terang :2 H20 ——> 2 NADPH2 + O2
Reaksi gelap :CO2 + 2 NADPH2 + O2——>NADP + H2 + CO + O + H2 +O2
atau
2 H2O + CO2 ——> CH2O + O2
atau
12 H2O + 6 CO2 ——> C6H12O6 + 6 O2
3. Kemosintesis
Tidak semua tumbuhan dapat melakukan asimilasi C menggunakan cahaya sebagai sumber energi. Beberapa macam bakteri yang tidak mempunyai klorofil dapat mengadakan asimilasi C dengan menggunakan energi yang berasal dan reaksi-reaksi kimia, misalnya bakteri sulfur, bakteri nitrat, bakteri nitrit, bakteri besi dan lain-lain. Bakteri-bakteri tersebut memperoleh energi dari hasil oksidasi senyawa-senyawa tertentu.
Bakteri besi memperoleh energi kimia dengan cara oksidasi Fe2+ (ferro) menjadi Fe3+ (ferri).
Bakteri Nitrosomonas dan Nitrosococcus memperoleh energi dengan cara mengoksidasi NH3, tepatnya Amonium Karbonat menjadi asam nitrit dengan reaksi:
Nitrosomonas
(NH4)2CO3 + 3 O2 ——————————> 2 HNO2 + CO2 + 3 H20 + Energi
Nitrosococcus
1. Sintesis Lemak
Lemak dapat disintesis dari karbohidrat dan protein, karena dalam metabolisme, ketiga zat tersebut bertemu di dalarn daur Krebs. Sebagian besar pertemuannya berlangsung melalui pintu gerbang utama siklus (daur) Krebs, yaitu Asetil Ko-enzim A. Akibatnya ketiga macam senyawa tadi dapat saling mengisi sebagai bahan pembentuk semua zat tersebut. Lemak dapat dibentuk dari protein dan karbohidrat, karbohidrat dapat dibentuk dari lemak dan protein dan seterusnya.
4.1. Sintesis Lemak dari Karbohidrat :
Glukosa diurai menjadi piruvat ———> gliserol.
Glukosa diubah ———> gula fosfat ———> asetilKo-A ———> asam lemak.
Gliserol + asam lemak ———> lemak.
4.2. Sintesis Lemak dari Protein:
Protein ————————> Asam Amino
protease
Sebelum terbentuk lemak asam amino mengalami deaminasi lebih dabulu, setelah itu memasuki daur Krebs. Banyak jenis asam amino yang langsung ke asam piravat ———> Asetil Ko-A.
Asam amino Serin, Alanin, Valin, Leusin, Isoleusin dapat terurai menjadi Asam pirovat, selanjutnya asam piruvat ——> gliserol ——> fosfogliseroldehid Fosfogliseraldehid dengan asam lemak akan mengalami esterifkasi membentuk lemak.
Lemak berperan sebagai sumber tenaga (kalori) cadangan. Nilai kalorinya lebih tinggi daripada karbohidrat. 1 gram lemak menghasilkan 9,3 kalori, sedangkan 1 gram karbohidrat hanya menghasilkan 4,1 kalori saja.
5. Sintesis Protein
Sintesis protein yang berlangsung di dalam sel, melibatkan DNA, RNA dan Ribosom. Penggabungan molekul-molekul asam amino dalam jumlah besar akan membentuk molekul polipeptida. Pada dasarnya protein adalah suatu polipeptida.
Setiap sel dari organisme mampu untuk mensintesis protein-protein tertentu yang sesuai dengan keperluannya. Sintesis protein dalam sel dapat terjadi karena pada inti sel terdapat suatu zat (substansi) yang berperan penting sebagai "pengatur sintesis protein". Substansi-substansi tersebut adalah DNA dan RNA.
Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah. Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa sumber. Bila pembongkaran suatu zat dalam lingkungan cukup oksigen (aerob) disebut proses respirad, bila dalam lingkungan tanpa oksigen (anaerob) disebut fermentasi.
Contoh Respirasi : C6H12O6 + O2 ——————> 6CO2 + 6H2O + 688KKal.
(glukosa)
Contoh Fermentasi :C6H1206 ——————> 2C2H5OH + 2CO2 + Energi.
(glukosa) (etanol)
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
1. Fotosintesis
Arti fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).
Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.
Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.
Untuk membuktikan bahwa dalam fotosintesis diperlukan energi cahaya matahari, dapat dilakukan percobaan Ingenhousz.
2. Pigmen Fotosintesis
Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil / pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari.
Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma.
Faktor-faktor yang berpengaruh terhadap pembentukan klorofil antara lain :
1. Gen :
bila gen untuk klorofil tidak ada maka tanaman tidak akan memiliki
klorofil.
2. Cahaya :
beberapa tanaman dalam pembentukan klorofil memerlukan cahaya,
tanaman lain tidak memerlukan cahaya.
3. Unsur N. Mg, Fe :
merupakan unsur-unsur pembentuk dan katalis dalam sintesis klorofil.
4. Air :
bila kekurangan air akan terjadi desintegrasi klorofil.
Pada tabun 1937 : Robin Hill mengemukakan bahwa cahaya matahari yang ditangkap oleh klorofil digunakan untak memecahkan air menjadi hidrogen dan oksigen. Peristiwa ini disebut fotolisis (reaksi terang).
H2 yang terlepas akan diikat oleh NADP dan terbentuklah NADPH2, sedang O2 tetap dalam keadaan bebas. Menurut Blackman (1905) akan terjadi penyusutan CO2 oleh H2 yang dibawa oleh NADP tanpa menggunakan cahaya. Peristiwa ini disebut reaksi gelap NADPH2 akan bereaksi dengan CO2 dalam bentuk H+ menjadi CH20.
CO2 + 2 NADPH2 + O2 ————> 2 NADP + H2 + CO+ O + H2 + O2
Ringkasnya :
Reaksi terang :2 H20 ——> 2 NADPH2 + O2
Reaksi gelap :CO2 + 2 NADPH2 + O2——>NADP + H2 + CO + O + H2 +O2
atau
2 H2O + CO2 ——> CH2O + O2
atau
12 H2O + 6 CO2 ——> C6H12O6 + 6 O2
3. Kemosintesis
Tidak semua tumbuhan dapat melakukan asimilasi C menggunakan cahaya sebagai sumber energi. Beberapa macam bakteri yang tidak mempunyai klorofil dapat mengadakan asimilasi C dengan menggunakan energi yang berasal dan reaksi-reaksi kimia, misalnya bakteri sulfur, bakteri nitrat, bakteri nitrit, bakteri besi dan lain-lain. Bakteri-bakteri tersebut memperoleh energi dari hasil oksidasi senyawa-senyawa tertentu.
Bakteri besi memperoleh energi kimia dengan cara oksidasi Fe2+ (ferro) menjadi Fe3+ (ferri).
Bakteri Nitrosomonas dan Nitrosococcus memperoleh energi dengan cara mengoksidasi NH3, tepatnya Amonium Karbonat menjadi asam nitrit dengan reaksi:
Nitrosomonas
(NH4)2CO3 + 3 O2 ——————————> 2 HNO2 + CO2 + 3 H20 + Energi
Nitrosococcus
1. Sintesis Lemak
Lemak dapat disintesis dari karbohidrat dan protein, karena dalam metabolisme, ketiga zat tersebut bertemu di dalarn daur Krebs. Sebagian besar pertemuannya berlangsung melalui pintu gerbang utama siklus (daur) Krebs, yaitu Asetil Ko-enzim A. Akibatnya ketiga macam senyawa tadi dapat saling mengisi sebagai bahan pembentuk semua zat tersebut. Lemak dapat dibentuk dari protein dan karbohidrat, karbohidrat dapat dibentuk dari lemak dan protein dan seterusnya.
4.1. Sintesis Lemak dari Karbohidrat :
Glukosa diurai menjadi piruvat ———> gliserol.
Glukosa diubah ———> gula fosfat ———> asetilKo-A ———> asam lemak.
Gliserol + asam lemak ———> lemak.
4.2. Sintesis Lemak dari Protein:
Protein ————————> Asam Amino
protease
Sebelum terbentuk lemak asam amino mengalami deaminasi lebih dabulu, setelah itu memasuki daur Krebs. Banyak jenis asam amino yang langsung ke asam piravat ———> Asetil Ko-A.
Asam amino Serin, Alanin, Valin, Leusin, Isoleusin dapat terurai menjadi Asam pirovat, selanjutnya asam piruvat ——> gliserol ——> fosfogliseroldehid Fosfogliseraldehid dengan asam lemak akan mengalami esterifkasi membentuk lemak.
Lemak berperan sebagai sumber tenaga (kalori) cadangan. Nilai kalorinya lebih tinggi daripada karbohidrat. 1 gram lemak menghasilkan 9,3 kalori, sedangkan 1 gram karbohidrat hanya menghasilkan 4,1 kalori saja.
5. Sintesis Protein
Sintesis protein yang berlangsung di dalam sel, melibatkan DNA, RNA dan Ribosom. Penggabungan molekul-molekul asam amino dalam jumlah besar akan membentuk molekul polipeptida. Pada dasarnya protein adalah suatu polipeptida.
Setiap sel dari organisme mampu untuk mensintesis protein-protein tertentu yang sesuai dengan keperluannya. Sintesis protein dalam sel dapat terjadi karena pada inti sel terdapat suatu zat (substansi) yang berperan penting sebagai "pengatur sintesis protein". Substansi-substansi tersebut adalah DNA dan RNA.
genetika
DNA sebagai basis molekuler dari ilmu pewarisan.
Genetika (dipinjam dari bahasa Belanda: genetica, adaptasi dari bahasa Inggris: genetics, dibentuk dari kata bahasa Yunani γέννω, genno, yang berarti "melahirkan") adalah cabang biologi yang mempelajari pewarisan sifat pada organisme maupun suborganisme (seperti virus dan prion). Secara singkat dapat juga dikatakan bahwa genetika adalah ilmu tentang gen dan segala aspeknya. Istilah "genetika" diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.
Bidang kajian genetika dimulai dari wilayah subselular (molekular) hingga populasi. Secara lebih rinci, genetika berusaha menjelaskan
material pembawa informasi untuk diwariskan (bahan genetik),
bagaimana informasi itu diekspresikan (ekspresi genetik), dan
bagaimana informasi itu dipindahkan dari satu individu ke individu yang lain (pewarisan genetik).
Awal mula dan konsep dasar
Periode pra-Mendel Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendel pada tahun 1900, sebetulnya genetika sebagai "ilmu pewarisan" atau hereditas sudah dikenal sejak masa prasejarah, seperti domestikasi dan pengembangan berbagai ras ternak dan kultivar tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Namun demikian, pengetahuan praktis ini tidak memberikan penjelasan penyebab dari gejala-gejala itu.
Teori populer mengenai pewarisan yang dianut pada masa itu adalah teori pewarisan campur: seseorang mewariskan campuran rata dari sifat-sifat yang dibawa tetuanya, terutama dari pejantan karena membawa sperma. Hasil penelitian Mendel menunjukkan bahwa teori ini tidak berlaku karena sifat-sifat dibawa dalam kombinasi yang dibawa alel-alel khas, bukannya campuran rata. Pendapat terkait lainnya adalah teori Lamarck: sifat yang diperoleh tetua dalam hidupnya diwariskan kepada anaknya. Teori ini juga patah dengan penjelasan Mendel bahwa sifat yang dibawa oleh gen tidak dipengaruhi pengalaman individu yang mewariskan sifat itu[1]. Charles Darwin juga memberikan penjelasan dengan hipotesis pangenesis dan kemudian dimodifikasi oleh Francis Galton[2]. Dalam pendapat ini, sel-sel tubuh menghasilkan partikel-partikel yang disebut gemmula yang akan dikumpulkan di organ reproduksi sebelum pembuahan terjadi. Jadi, setiap sel dalam tubuh memiliki sumbangan bagi sifat-sifat yang akan dibawa zuriat (keturunan).
Pada masa pra-Mendel, orang belum mengenal gen dan kromosom (meskipun DNA sudah diekstraksi namun pada abad ke-19 belum diketahui fungsinya). Saat itu orang masih beranggapan bahwa sifat diwariskan lewat sperma (tetua betina tidak menyumbang apa pun terhadap sifat anaknya).
Konsep dasar
Peletakan dasar ilmiah melalui percobaan sistematik baru dilakukan pada paruh akhir abad ke-19 oleh Gregor Johann Mendel. Ia adalah seorang biarawan dari Brno (Brünn dalam bahasa Jerman), Kekaisaran Austro-Hungaria (sekarang bagian dari Republik Ceko). Mendel disepakati umum sebagai 'pendiri genetika' setelah karyanya "Versuche über Pflanzenhybriden" atau Percobaan mengenai Persilangan Tanaman (dipublikasi cetak pada tahun 1866) ditemukan kembali secara terpisah oleh Hugo de Vries, Carl Correns, dan Erich von Tschermak pada tahun 1900. Dalam karyanya itu, Mendel pertama kali menemukan bahwa pewarisan sifat pada tanaman (ia menggunakan tujuh sifat pada tanaman kapri, Pisum sativum) mengikuti sejumlah nisbah matematika yang sederhana. Yang lebih penting, ia dapat menjelaskan bagaimana nisbah-nisbah ini terjadi, melalui apa yang dikenal sebagai 'Hukum Pewarisan Mendel'.
Dari karya ini, orang mulai mengenal konsep gen (Mendel menyebutnya 'faktor'). Gen adalah pembawa sifat. Alel adalah ekspresi alternatif dari gen dalam kaitan dengan suatu sifat. Setiap individu disomik selalu memiliki sepasang alel, yang berkaitan dengan suatu sifat yang khas, masing-masing berasal dari tetuanya. Status dari pasangan alel ini dinamakan genotipe. Apabila suatu individu memiliki pasangan alel sama, genotipe individu itu bergenotipe homozigot, apabila pasangannya berbeda, genotipe individu yang bersangkutan dalam keadaan heterozigot. Genotipe terkait dengan sifat yang teramati. Sifat yang terkait dengan suatu genotipe disebut fenotipe.
Kronologi perkembangan genetika
Setelah penemuan ulang karya Mendel, genetika berkembang sangat pesat. Perkembangan genetika sering kali menjadi contoh klasik mengenai penggunaan metode ilmiah dalam ilmu pengetahuan atau sains.
Berikut adalah tahapan-tahapan perkembangan genetika:
1859 Charles Darwin menerbitkan The Origin of Species, sebagai dasar variasi genetik.;
1865 Gregor Mendel menyerahkan naskah Percobaan mengenai Persilangan Tanaman;
1878 E. Strassburger memberikan penjelasan mengenai pembuahan berganda;
1900 Penemuan kembali hasil karya Mendel secara terpisah oleh Hugo de Vries (Belgia), Carl Correns (Jerman), dan Erich von Tschermak (Austro-Hungaria) ==> awal genetika klasik;
1903 Kromosom diketahui menjadi unit pewarisan genetik;
1905 Pakar biologi Inggris William Bateson mengkoinekan istilah 'genetika';
1908 dan 1909 Peletakan dasar teori genetika populasi oleh Weinberg (dokter dari Jerman) dan secara terpisah oleh James W. Hardy (ahli matematika Inggris) ==> awal genetika populasi;
1910 Thomas Hunt Morgan menunjukkan bahwa gen-gen berada pada kromosom, menggunakan lalat buah (Drosophila melanogaster) ==> awal sitogenetika;
1913 Alfred Sturtevant membuat peta genetik pertama dari suatu kromosom;
1918 Ronald Fisher (ahli biostatistika dari Inggris) menerbitkan On the correlation between relatives on the supposition of Mendelian inheritance (secara bebas berarti "Keterkaitan antarkerabat berdasarkan pewarisan Mendel"), yang mengakhiri perseteruan antara teori biometri (Pearson dkk.) dan teori Mendel sekaligus mengawali sintesis keduanya ==> awal genetika kuantitatif;
1927 Perubahan fisik pada gen disebut mutasi;
1928 Frederick Griffith menemukan suatu molekul pembawa sifat yang dapat dipindahkan antarbakteri (konjugasi);
1931 Pindah silang menyebabkan terjadinya rekombinasi;
1941 Edward Lawrie Tatum and George Wells Beadle menunjukkan bahwa gen-gen menyandi protein, ==> awal dogma pokok genetika;
1944 Oswald Theodore Avery, Colin McLeod and Maclyn McCarty mengisolasi DNA sebagai bahan genetik (mereka menyebutnya prinsip transformasi);
1950 Erwin Chargaff menunjukkan adanya aturan umum yang berlaku untuk empat nukleotida pada asam nukleat, misalnya adenin cenderung sama banyak dengan timin;
1950 Barbara McClintock menemukan transposon pada jagung;
1952 Hershey dan Chase membuktikan kalau informasi genetik bakteriofag (dan semua organisme lain) adalah DNA;
1953 Teka-teki struktur DNA dijawab oleh James D. Watson dan Francis Crick berupa pilin ganda (double helix), berdasarkan gambar-gambar difraksi sinar X DNA dari Rosalind Franklin ==> awal genetika molekular;
1956 Jo Hin Tjio dan Albert Levan memastikan bahwa kromosom manusia berjumlah 46;
1958 Eksperimen Meselson-Stahl menunjukkan bahwa DNA digandakan (direplikasi) secara semikonservatif;
1961 Kode genetik tersusun secara triplet;
1964 Howard Temin menunjukkan dengan virusRNA bahwa dogma pokok dari tidak selalu berlaku;
1970 Enzim restriksi ditemukan pada bakteri Haemophilus influenzae, memungkinan dilakukannya pemotongan dan penyambungan DNA oleh peneliti (lihat juga RFLP) ==> awal bioteknologi modern;
1977 Sekuensing DNA pertama kali oleh Fred Sanger, Walter Gilbert, dan Allan Maxam yang bekerja secara terpisah. Tim Sanger berhasil melakukan sekuensing seluruh genom Bakteriofag Φ-X174;, suatu virus ==> awal genomika;
1983 Perbanyakan (amplifikasi) DNA dapat dilakukan dengan mudah setelah Kary Banks Mullis menemukan Reaksi Berantai Polymerase (PCR);
1985 Alec Jeffreys menemukan teknik sidik jari genetik.
1989 Sekuensing pertama kali terhadap gen manusia pengkode protein CFTR penyebab cystic fibrosis;
1989 Peletakan landasan statistika yang kuat bagi analisis lokus sifat kuantitatif (analisis QTL) ;
1995 Sekuensing genom Haemophilus influenzae, yang menjadi sekuensing genom pertama terhadap organisme yang hidup bebas;
1996 Sekuensing pertama terhadap eukariota: khamir Saccharomyces cerevisiae;
1998 Hasil sekuensing pertama terhadap eukariota multiselular, nematoda Caenorhabditis elegans, diumumkan;
2001 Draf awal urutan genom manusia dirilis bersamaan dengan mulainya Human Genome Project;
2003 Proyek Genom Manusia (Human Genome Project) menyelesaikan 99% pekerjaannya pada tanggal (14 April) dengan akurasi 99.99% [1]
Cabang-cabang Genetika
Genetika berkembang baik sebagai ilmu murni maupun ilmu terapan. Cabang-cabang ilmu ini terbentuk terutama sebagai akibat pendalaman terhadap suatu aspek tertentu dari objek kajiannya.
Cabang-cabang murni genetika :
genetika molekular
genetika sel (sitogenetika)
genetika populasi
genetika kuantitatif
genetika perkembangan
Cabang-cabang terapan genetika :
genetika kedokteran
ilmu pemuliaan
rekayasa genetika atau rekayasa gen
Bioteknologi merupakan ilmu terapan yang tidak secara langsung merupakan cabang genetika tetapi sangat terkait dengan perkembangan di bidang genetika.
Genetika arah-balik (reverse genetics)
Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian. Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics.
DNA sebagai basis molekuler dari ilmu pewarisan.
Genetika (dipinjam dari bahasa Belanda: genetica, adaptasi dari bahasa Inggris: genetics, dibentuk dari kata bahasa Yunani γέννω, genno, yang berarti "melahirkan") adalah cabang biologi yang mempelajari pewarisan sifat pada organisme maupun suborganisme (seperti virus dan prion). Secara singkat dapat juga dikatakan bahwa genetika adalah ilmu tentang gen dan segala aspeknya. Istilah "genetika" diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.
Bidang kajian genetika dimulai dari wilayah subselular (molekular) hingga populasi. Secara lebih rinci, genetika berusaha menjelaskan
material pembawa informasi untuk diwariskan (bahan genetik),
bagaimana informasi itu diekspresikan (ekspresi genetik), dan
bagaimana informasi itu dipindahkan dari satu individu ke individu yang lain (pewarisan genetik).
Awal mula dan konsep dasar
Periode pra-Mendel Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendel pada tahun 1900, sebetulnya genetika sebagai "ilmu pewarisan" atau hereditas sudah dikenal sejak masa prasejarah, seperti domestikasi dan pengembangan berbagai ras ternak dan kultivar tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Namun demikian, pengetahuan praktis ini tidak memberikan penjelasan penyebab dari gejala-gejala itu.
Teori populer mengenai pewarisan yang dianut pada masa itu adalah teori pewarisan campur: seseorang mewariskan campuran rata dari sifat-sifat yang dibawa tetuanya, terutama dari pejantan karena membawa sperma. Hasil penelitian Mendel menunjukkan bahwa teori ini tidak berlaku karena sifat-sifat dibawa dalam kombinasi yang dibawa alel-alel khas, bukannya campuran rata. Pendapat terkait lainnya adalah teori Lamarck: sifat yang diperoleh tetua dalam hidupnya diwariskan kepada anaknya. Teori ini juga patah dengan penjelasan Mendel bahwa sifat yang dibawa oleh gen tidak dipengaruhi pengalaman individu yang mewariskan sifat itu[1]. Charles Darwin juga memberikan penjelasan dengan hipotesis pangenesis dan kemudian dimodifikasi oleh Francis Galton[2]. Dalam pendapat ini, sel-sel tubuh menghasilkan partikel-partikel yang disebut gemmula yang akan dikumpulkan di organ reproduksi sebelum pembuahan terjadi. Jadi, setiap sel dalam tubuh memiliki sumbangan bagi sifat-sifat yang akan dibawa zuriat (keturunan).
Pada masa pra-Mendel, orang belum mengenal gen dan kromosom (meskipun DNA sudah diekstraksi namun pada abad ke-19 belum diketahui fungsinya). Saat itu orang masih beranggapan bahwa sifat diwariskan lewat sperma (tetua betina tidak menyumbang apa pun terhadap sifat anaknya).
Konsep dasar
Peletakan dasar ilmiah melalui percobaan sistematik baru dilakukan pada paruh akhir abad ke-19 oleh Gregor Johann Mendel. Ia adalah seorang biarawan dari Brno (Brünn dalam bahasa Jerman), Kekaisaran Austro-Hungaria (sekarang bagian dari Republik Ceko). Mendel disepakati umum sebagai 'pendiri genetika' setelah karyanya "Versuche über Pflanzenhybriden" atau Percobaan mengenai Persilangan Tanaman (dipublikasi cetak pada tahun 1866) ditemukan kembali secara terpisah oleh Hugo de Vries, Carl Correns, dan Erich von Tschermak pada tahun 1900. Dalam karyanya itu, Mendel pertama kali menemukan bahwa pewarisan sifat pada tanaman (ia menggunakan tujuh sifat pada tanaman kapri, Pisum sativum) mengikuti sejumlah nisbah matematika yang sederhana. Yang lebih penting, ia dapat menjelaskan bagaimana nisbah-nisbah ini terjadi, melalui apa yang dikenal sebagai 'Hukum Pewarisan Mendel'.
Dari karya ini, orang mulai mengenal konsep gen (Mendel menyebutnya 'faktor'). Gen adalah pembawa sifat. Alel adalah ekspresi alternatif dari gen dalam kaitan dengan suatu sifat. Setiap individu disomik selalu memiliki sepasang alel, yang berkaitan dengan suatu sifat yang khas, masing-masing berasal dari tetuanya. Status dari pasangan alel ini dinamakan genotipe. Apabila suatu individu memiliki pasangan alel sama, genotipe individu itu bergenotipe homozigot, apabila pasangannya berbeda, genotipe individu yang bersangkutan dalam keadaan heterozigot. Genotipe terkait dengan sifat yang teramati. Sifat yang terkait dengan suatu genotipe disebut fenotipe.
Kronologi perkembangan genetika
Setelah penemuan ulang karya Mendel, genetika berkembang sangat pesat. Perkembangan genetika sering kali menjadi contoh klasik mengenai penggunaan metode ilmiah dalam ilmu pengetahuan atau sains.
Berikut adalah tahapan-tahapan perkembangan genetika:
1859 Charles Darwin menerbitkan The Origin of Species, sebagai dasar variasi genetik.;
1865 Gregor Mendel menyerahkan naskah Percobaan mengenai Persilangan Tanaman;
1878 E. Strassburger memberikan penjelasan mengenai pembuahan berganda;
1900 Penemuan kembali hasil karya Mendel secara terpisah oleh Hugo de Vries (Belgia), Carl Correns (Jerman), dan Erich von Tschermak (Austro-Hungaria) ==> awal genetika klasik;
1903 Kromosom diketahui menjadi unit pewarisan genetik;
1905 Pakar biologi Inggris William Bateson mengkoinekan istilah 'genetika';
1908 dan 1909 Peletakan dasar teori genetika populasi oleh Weinberg (dokter dari Jerman) dan secara terpisah oleh James W. Hardy (ahli matematika Inggris) ==> awal genetika populasi;
1910 Thomas Hunt Morgan menunjukkan bahwa gen-gen berada pada kromosom, menggunakan lalat buah (Drosophila melanogaster) ==> awal sitogenetika;
1913 Alfred Sturtevant membuat peta genetik pertama dari suatu kromosom;
1918 Ronald Fisher (ahli biostatistika dari Inggris) menerbitkan On the correlation between relatives on the supposition of Mendelian inheritance (secara bebas berarti "Keterkaitan antarkerabat berdasarkan pewarisan Mendel"), yang mengakhiri perseteruan antara teori biometri (Pearson dkk.) dan teori Mendel sekaligus mengawali sintesis keduanya ==> awal genetika kuantitatif;
1927 Perubahan fisik pada gen disebut mutasi;
1928 Frederick Griffith menemukan suatu molekul pembawa sifat yang dapat dipindahkan antarbakteri (konjugasi);
1931 Pindah silang menyebabkan terjadinya rekombinasi;
1941 Edward Lawrie Tatum and George Wells Beadle menunjukkan bahwa gen-gen menyandi protein, ==> awal dogma pokok genetika;
1944 Oswald Theodore Avery, Colin McLeod and Maclyn McCarty mengisolasi DNA sebagai bahan genetik (mereka menyebutnya prinsip transformasi);
1950 Erwin Chargaff menunjukkan adanya aturan umum yang berlaku untuk empat nukleotida pada asam nukleat, misalnya adenin cenderung sama banyak dengan timin;
1950 Barbara McClintock menemukan transposon pada jagung;
1952 Hershey dan Chase membuktikan kalau informasi genetik bakteriofag (dan semua organisme lain) adalah DNA;
1953 Teka-teki struktur DNA dijawab oleh James D. Watson dan Francis Crick berupa pilin ganda (double helix), berdasarkan gambar-gambar difraksi sinar X DNA dari Rosalind Franklin ==> awal genetika molekular;
1956 Jo Hin Tjio dan Albert Levan memastikan bahwa kromosom manusia berjumlah 46;
1958 Eksperimen Meselson-Stahl menunjukkan bahwa DNA digandakan (direplikasi) secara semikonservatif;
1961 Kode genetik tersusun secara triplet;
1964 Howard Temin menunjukkan dengan virusRNA bahwa dogma pokok dari tidak selalu berlaku;
1970 Enzim restriksi ditemukan pada bakteri Haemophilus influenzae, memungkinan dilakukannya pemotongan dan penyambungan DNA oleh peneliti (lihat juga RFLP) ==> awal bioteknologi modern;
1977 Sekuensing DNA pertama kali oleh Fred Sanger, Walter Gilbert, dan Allan Maxam yang bekerja secara terpisah. Tim Sanger berhasil melakukan sekuensing seluruh genom Bakteriofag Φ-X174;, suatu virus ==> awal genomika;
1983 Perbanyakan (amplifikasi) DNA dapat dilakukan dengan mudah setelah Kary Banks Mullis menemukan Reaksi Berantai Polymerase (PCR);
1985 Alec Jeffreys menemukan teknik sidik jari genetik.
1989 Sekuensing pertama kali terhadap gen manusia pengkode protein CFTR penyebab cystic fibrosis;
1989 Peletakan landasan statistika yang kuat bagi analisis lokus sifat kuantitatif (analisis QTL) ;
1995 Sekuensing genom Haemophilus influenzae, yang menjadi sekuensing genom pertama terhadap organisme yang hidup bebas;
1996 Sekuensing pertama terhadap eukariota: khamir Saccharomyces cerevisiae;
1998 Hasil sekuensing pertama terhadap eukariota multiselular, nematoda Caenorhabditis elegans, diumumkan;
2001 Draf awal urutan genom manusia dirilis bersamaan dengan mulainya Human Genome Project;
2003 Proyek Genom Manusia (Human Genome Project) menyelesaikan 99% pekerjaannya pada tanggal (14 April) dengan akurasi 99.99% [1]
Cabang-cabang Genetika
Genetika berkembang baik sebagai ilmu murni maupun ilmu terapan. Cabang-cabang ilmu ini terbentuk terutama sebagai akibat pendalaman terhadap suatu aspek tertentu dari objek kajiannya.
Cabang-cabang murni genetika :
genetika molekular
genetika sel (sitogenetika)
genetika populasi
genetika kuantitatif
genetika perkembangan
Cabang-cabang terapan genetika :
genetika kedokteran
ilmu pemuliaan
rekayasa genetika atau rekayasa gen
Bioteknologi merupakan ilmu terapan yang tidak secara langsung merupakan cabang genetika tetapi sangat terkait dengan perkembangan di bidang genetika.
Genetika arah-balik (reverse genetics)
Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian. Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics.
REPRODUKSI SEL
Kita mengenal tiga jenis reproduski sel, yaitu Amitosis, Mitosis dan Meiosis (pembelahan reduksi). Amitosis adalah reproduksi sel di mana sel membelah diri secara langsung tanpa melalui tahap-tahap pembelahan sel. Pembelahan cara ini banyak dijumpai pada sel-sel yang bersifat prokariotik, misalnya pada bakteri, ganggang biru.
MITOSIS adalah cara reproduksi sel dimana sel membelah melalui tahap-tahap yang teratur, yaitu Profase Metafase-Anafase-Telofase. Antara tahap telofase ke tahap profase berikutnya terdapat masa istirahat sel yang dinarnakan Interfase (tahap ini tidak termasuk tahap pembelahan sel). Pada tahap interfase inti sel melakukan sintesis bahan-bahan inti.
Secara garis besar ciri dari setiap tahap pembelahan pada mitosis adalah sebagai berikut:
1. Profase :
pada tahap ini yang terpenting adalah benang-benang kromatin
menebal menjadi kromosom dan kromosom mulai berduplikasi menjadi
kromatid.
2. Metafase:
pada tahap ini kromosom/kromatid berjejer teratur dibidang
pembelahan (bidang equator) sehingga pada tahap inilah kromosom
/kromatid mudah diamati dan dipelajari.
3. Anafase:
pada fase ini kromatid akan tertarik oleh benang gelendong menuju
ke kutub-kutub pembelahan sel.
4. Telofase:
pada tahap ini terjadi peristiwa KARIOKINESIS (pembagian inti
menjadi dua bagian) dan SITOKINESIS (pembagian sitoplasma
menjadi dua bagian).
Meiosis (Pembelahan Reduksi) adalah reproduksi sel melalui tahap-tahap pembelahan seperti pada mitosis, tetapi dalam prosesnya terjadi pengurangan (reduksi) jumlah kromosom.
Meiosis terbagi menjadi due tahap besar yaitu Meiosis I dan Meiosis II Baik meiosis I maupun meiosis II terbagi lagi menjadi tahap-tahap seperti pada mitosis. Secara lengkap pembagian tahap pada pembelahan reduksi adalah sebagai berikut :
Berbeda dengan pembelahan mitosis, pada pembelahan meiosis antara telofase I dengan profase II tidak terdapat fase istirahat (interface). Setelah selesai telofase II dan akan dilanjutkan ke profase I barulah terdapat fase istirahat atau interface.
PERBEDAAN ANTARA MITOSIS DENGAN MEIOSIS
Aspek yang dibedakan
Mitosis
Meiosis
Tujuan Untuk pertumbuhan Sifat mempertahan-kan diploid
Hasil pembelahan 2 sel anak 4 sel anak
Sifat sel anak diploid (2n) haploid (n)
Tempat terjadinya sel somatis sel gonad
Pada hewan dikenal adanya peristiwa meiosis dalam pembentukan gamet, yaitu Oogenesis dan Speatogenesis. Sedangkan pada tumbahan dikenal Makrosporogenesis (Megasporogenesis) dan Mikrosporogenesis.
Kita mengenal tiga jenis reproduski sel, yaitu Amitosis, Mitosis dan Meiosis (pembelahan reduksi). Amitosis adalah reproduksi sel di mana sel membelah diri secara langsung tanpa melalui tahap-tahap pembelahan sel. Pembelahan cara ini banyak dijumpai pada sel-sel yang bersifat prokariotik, misalnya pada bakteri, ganggang biru.
MITOSIS adalah cara reproduksi sel dimana sel membelah melalui tahap-tahap yang teratur, yaitu Profase Metafase-Anafase-Telofase. Antara tahap telofase ke tahap profase berikutnya terdapat masa istirahat sel yang dinarnakan Interfase (tahap ini tidak termasuk tahap pembelahan sel). Pada tahap interfase inti sel melakukan sintesis bahan-bahan inti.
Secara garis besar ciri dari setiap tahap pembelahan pada mitosis adalah sebagai berikut:
1. Profase :
pada tahap ini yang terpenting adalah benang-benang kromatin
menebal menjadi kromosom dan kromosom mulai berduplikasi menjadi
kromatid.
2. Metafase:
pada tahap ini kromosom/kromatid berjejer teratur dibidang
pembelahan (bidang equator) sehingga pada tahap inilah kromosom
/kromatid mudah diamati dan dipelajari.
3. Anafase:
pada fase ini kromatid akan tertarik oleh benang gelendong menuju
ke kutub-kutub pembelahan sel.
4. Telofase:
pada tahap ini terjadi peristiwa KARIOKINESIS (pembagian inti
menjadi dua bagian) dan SITOKINESIS (pembagian sitoplasma
menjadi dua bagian).
Meiosis (Pembelahan Reduksi) adalah reproduksi sel melalui tahap-tahap pembelahan seperti pada mitosis, tetapi dalam prosesnya terjadi pengurangan (reduksi) jumlah kromosom.
Meiosis terbagi menjadi due tahap besar yaitu Meiosis I dan Meiosis II Baik meiosis I maupun meiosis II terbagi lagi menjadi tahap-tahap seperti pada mitosis. Secara lengkap pembagian tahap pada pembelahan reduksi adalah sebagai berikut :
Berbeda dengan pembelahan mitosis, pada pembelahan meiosis antara telofase I dengan profase II tidak terdapat fase istirahat (interface). Setelah selesai telofase II dan akan dilanjutkan ke profase I barulah terdapat fase istirahat atau interface.
PERBEDAAN ANTARA MITOSIS DENGAN MEIOSIS
Aspek yang dibedakan
Mitosis
Meiosis
Tujuan Untuk pertumbuhan Sifat mempertahan-kan diploid
Hasil pembelahan 2 sel anak 4 sel anak
Sifat sel anak diploid (2n) haploid (n)
Tempat terjadinya sel somatis sel gonad
Pada hewan dikenal adanya peristiwa meiosis dalam pembentukan gamet, yaitu Oogenesis dan Speatogenesis. Sedangkan pada tumbahan dikenal Makrosporogenesis (Megasporogenesis) dan Mikrosporogenesis.
Langganan:
Postingan (Atom)
Blogger news
About Me
- Kyki's Blog
Diberdayakan oleh Blogger.
Blogroll
Welcome To Kyki's Blog. I build this blog in order to share information or knowledge that I know. Hopefully this blog useful. Thanks
Popular Posts
-
Reaksi kimia merupakan contoh yang paling sesuai untuk perubahan kimia. Pada reaksi kimia, satu zat atau lebih diubah menjadi zat baru. Zat...
-
DEPARTEMEN PENDIDIKAN NASIONAL DIRJEN MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH UMUM TEST SELEKSI TINGKAT PROVI...
-
ACTIVE AND PASSIVE VOICE Kalimat Aktif dan Kalimat Pasif Kata kerja transitif mempunyai dua voice (ragam gramatikal), aktif dan pas...
-
SOAL-SOAL DEKLARASI 1. Manakah yang mendeklarasikan tipe enumerasi dengan tepat? a. Type a=integer; b. Type a=1..300; c. Type a=(baik, jelek...
-
Procedure, Narrative And Expressions Procedure How to make Lemonade Ingredients: For each glass use: - 2 tablespoons of lemon jui...
-
SUKU BANYAK Suku banyak (polinomial) adalah sebuah ungkapan aljabar yang variabel (peubahnya) berpangkat Bilangan bulat non negative. B...
-
integral di 07:15 Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi ...
-
Teknik Lempar Cakram Yang Baik. Lempar cakram adalah salah satu cabang olahraga athletik. Lempar cakram diperlombakan sejak Olimpi...
-
DEFINITION : Advertising is a form of communication intended to persuade an audience (viewers, readers or listeners) to purchase or take s...
-
Tidak jarang para pelajar sekolah ataupun peserta kursus Bahasa Inggris mendapatkan tugas untuk membuat conto...
Follow This Blog
Blogger templates
Tags
- Bahasa Arab Kelas XII (2)
- Bahasa Indonesia SMA X (3)
- Bahasa Indonesia SMA XI (3)
- Bahasa Indonesia SMA XII (3)
- Bahasa Inggris SMA X (3)
- Bahasa Inggris SMA XI (3)
- Bahasa Inggris SMA XII (3)
- Bahasa Jepang Kelas XII (3)
- Biologi Kelas XII (2)
- Biologi SMA X (3)
- Biologi SMA XI (3)
- Biologi SMA XII (3)
- Ekonomi SMA X (3)
- Fisika SMA X (3)
- Fisika SMA XI (3)
- Fisika SMA XII (3)
- Geografi SMA X (3)
- Kimia SMA X (3)
- Kimia SMA XI (3)
- Kimia SMA XII (3)
- Kitty Wedding (1)
- Matematika SMA X (3)
- Matematika SMA XI (3)
- Matematika SMA XII (3)
- OSN Astronomi (1)
- OSN Biologi (1)
- OSN Ekonomi (1)
- OSN Fisika (1)
- OSN Kebumian (1)
- OSN Kimia (1)
- OSN Matemika (1)
- OSN Tik (1)
- Pend. Agama Islam SMA X (3)
- Pend. Agama Islam SMA XI (3)
- Pend. Agama Islam SMA XII (3)
- Penjaskes SMA X (3)
- Penjaskes SMA XI (3)
- Penjaskes SMA XII (3)
- Pkn SMA X (3)
- Pkn SMA XI (3)
- Pkn SMA XII (3)
- Sejarah SMA X (3)
- Sejarah SMA XI (3)
- Sejarah SMA XII (3)
- Seni budaya kelas XII (2)
- Sosiologi SMA X (3)
- Terselubung (3)
- TIK SMA XI (2)
- TIK SMA XII (2)
- TIK SMA XIII (1)
Blog archive
-
▼
2012
(125)
-
▼
Mei
(51)
- KilesKitty:)
- Program Linear
- BARISAN DAN DERET
- Aplikasi Gerak Harmonik Sederhana
- metebolisme dan katabolisme
- genetika
- ACCUSING, DENYING, APOLOGIZING
- Functional Skills
- Sejarah umum seni lukis
- MOZAIK
- ANCAMAN DISINTEGRASI BANGSA
- KONFLIK INDONESIA-BELANDA TAHUN 1945-1949
- PERKEMBANGAN POLITIK DAN EKONOMI SERTA PERUBAHAN M...
- Macromedia Kelas XII
- Pengenalan Grafis Berbasis Vektor dan Berbasis Bitmap
- Power Point
- pancasila Sebagai Dasar Negara (PKN XII)
- Sistem Pemerintahan
- Peranan pers dalam masyarakat demokrasi,
- senam lantai
- lempar lembing
- KARATE
- integral
- UNSUR-UNSUR GOLONGAN UTAMA
- SIFAT KOLIGATIF
- SEL ELEKTROLISIS
- Persamaan Gerak Harmonik Sederhana
- gerak harmonik
- genetika
- REPRODUKSI SEL
- metebolisme dan katabolisme
- DAI IK KA
- DAI SAN KA
- DAI GO KA
- A LETTER
- PIDATO
- LAPORAN HASIL SEMINAR
- surat lamaran
- KEHIDUPAN SEHARI-HARI
- Beberapa Contoh Ucapan Selamat dan Tegur Sapa dala...
- MUNAKAHAT
- IMAN KEPADA QADA DAN QADAR ALLAH SWT
- Pengertian Hari Kiamat
- Tik
- Matematika
- Kimia
- Kebumian
- Fisika
- Ekonomi
- Biologi
- Astronomi
-
▼
Mei
(51)