Rabu, 02 Mei 2012
04.52 |
Diposting oleh
Kyki's Blog |
Edit Entri
Persamaan Gerak Harmonik Sederhana
Y = A sin \omega\ t
Keterangan :
Y = simpangan
A = simpangan maksimum (amplitudo)
F = frekuensi
t = waktu
Jika posisi sudut awal adalah \theta_0, maka persamaan gerak harmonik sederhana menjadi [6]:
Y = A sin \omega\ t + \theta_0
Kecepatan Gerak Harmonik Sederhana
Dari persamaan gerak harmonik sederhana Y = A sin \omega\ t
Kecepatan gerak harmonik sederhana[6] :
v = \frac{dy}{dt} (sin A sin \omega\ t)
v = A \omega\ cos \omega\ t
Kecepatan maksimum diperoleh jika nilai cos \omega\ t = 1 atau \omega\ t = 0, sehingga : v maksimum = A \omega
Kecepatan untuk Berbagai Simpangan
Y = A sin \omega\ t
Persamaan tersebut dikuadratkan
Y^2 = A^2 sin^2 \omega\ t, maka[6] :
Y^2 = A^2 (1 - COS^2 \omega\ t)
Y^2 = A^2 - A^2 COS^2 \omega\ t ...(1)
Dari persamaan : v = A \omega\ cos \omega\ t
\frac{v}{\omega} = A cos \omega\ t ...(2)
Persamaan (1) dan (2) dikalikan, sehingga didapatkan :
v^2 = \omega\ (A^2 - Y^2)
Keterangan :
v =kecepatan benda pada simpangan tertentu
\omega = kecepatan sudut
A = amplitudo
Y = simpangan
Percepatan Gerak Harmonik Sederhana
Dari persamaan kecepatan : v = A \omega\ cos \omega\ t, maka[6] :
a = \frac{dv}{dt} = \frac{d}{dt}
a = -A \omega^2\ sin \omega\ t
Percepatan maksimum jika \omega\ t = 1 atau \omega\ t = 900 = \frac \pi 2
a maks = -A \omega^2\ sin \frac \pi 2
a maks = -A \omega^2\
Keterangan :
a maks = percepatan maksimum
A = amplitudo
\omega = kecepatan sudut
Hubungan Gerak Harmonik Sederhana (GHS) dan Gerak Melingkar Beraturan (GMB)
Gerak Melingkar
Gerak Melingkar Beraturan dapat dipandang sebagai gabungan dua gerak harmonik sederhana yang saling tegak lurus, memiliki Amplitudo (A) dan frekuensi yang sama namun memiliki beda fase relatif \frac{\phi}{2} atau kita dapat memandang Gerak Harmonik Sederhana sebagai suatu komponen Gerak Melingkar Beraturan[7]. Jadi dapat diimpulkan bahwa pada suatu garis lurus, proyeksi sebuah benda yang melakukan Gerak Melingkar Beraturan merupakan Gerak Harmonik Sederhana[7]. Frekuensi dan periode Gerak Melingkar Beraturan sama dengan Frekuensi dan periode Gerak Harmonik Sederhana yang diproyeksikan[7].
Misalnya sebuah benda bergerak dengan laju tetap (v) pada sebuah lingkaran yang memiliki jari-jari A sebagaimana tampak pada gambar di samping[7]. Benda melakukan Gerak Melingkar Beraturan, sehingga kecepatan sudutnya bernilai konstan[7]. Hubungan antara kecepatan linear dengan kecepatan sudut dalam Gerak Melingkar Beraturan dinyatakan dengan persamaan[7] :
\omega = \frac{v}{\gamma}
Karena jari-jari (r) pada Gerak Melingkar Beraturan di atas adalah A, maka persamaan ini diubah menjadi :
\omega = \frac{v}{\gamma}, v = \omega\ A ... (1)
Simpangan sudut (teta) adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r), dan dinyatakan dengan persamaan :
\theta = \frac{x}{\gamma} = \frac{vt}{\gamma} ... (2), x adalah jarak linear, v adalah kecepatan linear dan t adalah waktu tempuh (x = vt adalah persamaan Gerak Lurus alias Gerak Linear). Kemudian v pada persamaan 2 digantikan dengan v pada persamaan 1 dan jari-jari r digantikan dengan A :
\theta = \frac{vt}{\gamma}
\theta = \omega\ t
Dengan demikian, simpangan sudut benda relatif terhadap sumbu x dinyatakan dengan persamaan :
\theta = \omega\ t + \theta_0 ... (3) (\theta_0 adalah simpangan waktu pada t = 0})
Pada gambar di atas, posisi benda pada sumbu x dinyatakan dengan persamaan :
x = A cos \theta ...(4)
x = A cos (\omega\ t + \theta_0)
Persamaan posisi benda pada sumbu y :
y = A sin (\omega\ t + \theta_0)
Keterangan :
A = amplitudo
\omega = kecepatan sudut
\theta_0 = simpangan udut pada saat t = 0
Y = A sin \omega\ t
Keterangan :
Y = simpangan
A = simpangan maksimum (amplitudo)
F = frekuensi
t = waktu
Jika posisi sudut awal adalah \theta_0, maka persamaan gerak harmonik sederhana menjadi [6]:
Y = A sin \omega\ t + \theta_0
Kecepatan Gerak Harmonik Sederhana
Dari persamaan gerak harmonik sederhana Y = A sin \omega\ t
Kecepatan gerak harmonik sederhana[6] :
v = \frac{dy}{dt} (sin A sin \omega\ t)
v = A \omega\ cos \omega\ t
Kecepatan maksimum diperoleh jika nilai cos \omega\ t = 1 atau \omega\ t = 0, sehingga : v maksimum = A \omega
Kecepatan untuk Berbagai Simpangan
Y = A sin \omega\ t
Persamaan tersebut dikuadratkan
Y^2 = A^2 sin^2 \omega\ t, maka[6] :
Y^2 = A^2 (1 - COS^2 \omega\ t)
Y^2 = A^2 - A^2 COS^2 \omega\ t ...(1)
Dari persamaan : v = A \omega\ cos \omega\ t
\frac{v}{\omega} = A cos \omega\ t ...(2)
Persamaan (1) dan (2) dikalikan, sehingga didapatkan :
v^2 = \omega\ (A^2 - Y^2)
Keterangan :
v =kecepatan benda pada simpangan tertentu
\omega = kecepatan sudut
A = amplitudo
Y = simpangan
Percepatan Gerak Harmonik Sederhana
Dari persamaan kecepatan : v = A \omega\ cos \omega\ t, maka[6] :
a = \frac{dv}{dt} = \frac{d}{dt}
a = -A \omega^2\ sin \omega\ t
Percepatan maksimum jika \omega\ t = 1 atau \omega\ t = 900 = \frac \pi 2
a maks = -A \omega^2\ sin \frac \pi 2
a maks = -A \omega^2\
Keterangan :
a maks = percepatan maksimum
A = amplitudo
\omega = kecepatan sudut
Hubungan Gerak Harmonik Sederhana (GHS) dan Gerak Melingkar Beraturan (GMB)
Gerak Melingkar
Gerak Melingkar Beraturan dapat dipandang sebagai gabungan dua gerak harmonik sederhana yang saling tegak lurus, memiliki Amplitudo (A) dan frekuensi yang sama namun memiliki beda fase relatif \frac{\phi}{2} atau kita dapat memandang Gerak Harmonik Sederhana sebagai suatu komponen Gerak Melingkar Beraturan[7]. Jadi dapat diimpulkan bahwa pada suatu garis lurus, proyeksi sebuah benda yang melakukan Gerak Melingkar Beraturan merupakan Gerak Harmonik Sederhana[7]. Frekuensi dan periode Gerak Melingkar Beraturan sama dengan Frekuensi dan periode Gerak Harmonik Sederhana yang diproyeksikan[7].
Misalnya sebuah benda bergerak dengan laju tetap (v) pada sebuah lingkaran yang memiliki jari-jari A sebagaimana tampak pada gambar di samping[7]. Benda melakukan Gerak Melingkar Beraturan, sehingga kecepatan sudutnya bernilai konstan[7]. Hubungan antara kecepatan linear dengan kecepatan sudut dalam Gerak Melingkar Beraturan dinyatakan dengan persamaan[7] :
\omega = \frac{v}{\gamma}
Karena jari-jari (r) pada Gerak Melingkar Beraturan di atas adalah A, maka persamaan ini diubah menjadi :
\omega = \frac{v}{\gamma}, v = \omega\ A ... (1)
Simpangan sudut (teta) adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r), dan dinyatakan dengan persamaan :
\theta = \frac{x}{\gamma} = \frac{vt}{\gamma} ... (2), x adalah jarak linear, v adalah kecepatan linear dan t adalah waktu tempuh (x = vt adalah persamaan Gerak Lurus alias Gerak Linear). Kemudian v pada persamaan 2 digantikan dengan v pada persamaan 1 dan jari-jari r digantikan dengan A :
\theta = \frac{vt}{\gamma}
\theta = \omega\ t
Dengan demikian, simpangan sudut benda relatif terhadap sumbu x dinyatakan dengan persamaan :
\theta = \omega\ t + \theta_0 ... (3) (\theta_0 adalah simpangan waktu pada t = 0})
Pada gambar di atas, posisi benda pada sumbu x dinyatakan dengan persamaan :
x = A cos \theta ...(4)
x = A cos (\omega\ t + \theta_0)
Persamaan posisi benda pada sumbu y :
y = A sin (\omega\ t + \theta_0)
Keterangan :
A = amplitudo
\omega = kecepatan sudut
\theta_0 = simpangan udut pada saat t = 0
Label:
Fisika SMA XII
Langganan:
Posting Komentar (Atom)
Blogger news
About Me
- Kyki's Blog
Diberdayakan oleh Blogger.
Blogroll
Welcome To Kyki's Blog. I build this blog in order to share information or knowledge that I know. Hopefully this blog useful. Thanks
Popular Posts
-
integral di 07:15 Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi ...
-
SOAL-SOAL DEKLARASI 1. Manakah yang mendeklarasikan tipe enumerasi dengan tepat? a. Type a=integer; b. Type a=1..300; c. Type a=(baik, jelek...
-
SUKU BANYAK Suku banyak (polinomial) adalah sebuah ungkapan aljabar yang variabel (peubahnya) berpangkat Bilangan bulat non negative. B...
-
Drama ditulis dengan maksud dipentaskan. Jadi, kurang lengkap jika naskah drama tidak dipentaskan. Kita dapat menikmati dan mengapresias...
-
ACTIVE AND PASSIVE VOICE Kalimat Aktif dan Kalimat Pasif Kata kerja transitif mempunyai dua voice (ragam gramatikal), aktif dan pas...
-
DEPARTEMEN PENDIDIKAN NASIONAL DIRJEN MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH UMUM TEST SELEKSI TINGKAT PROVI...
-
Reaksi kimia merupakan contoh yang paling sesuai untuk perubahan kimia. Pada reaksi kimia, satu zat atau lebih diubah menjadi zat baru. Zat...
-
Pencampuran larutan asam dengan larutan basa akan menghasilkan garam dan air. Namun demikian, garam dapat bersifat asam, basa maupun netral...
-
Pengertian Negera Kesatuan Republik Indonesia. Keberadaan Negara Kesatuan Republik Indonesia (NKRI) tidak dapat dipisahkan dari peristiw...
-
Teknik Lempar Cakram Yang Baik. Lempar cakram adalah salah satu cabang olahraga athletik. Lempar cakram diperlombakan sejak Olimpi...
Follow This Blog
Blogger templates
Tags
- Bahasa Arab Kelas XII (2)
- Bahasa Indonesia SMA X (3)
- Bahasa Indonesia SMA XI (3)
- Bahasa Indonesia SMA XII (3)
- Bahasa Inggris SMA X (3)
- Bahasa Inggris SMA XI (3)
- Bahasa Inggris SMA XII (3)
- Bahasa Jepang Kelas XII (3)
- Biologi Kelas XII (2)
- Biologi SMA X (3)
- Biologi SMA XI (3)
- Biologi SMA XII (3)
- Ekonomi SMA X (3)
- Fisika SMA X (3)
- Fisika SMA XI (3)
- Fisika SMA XII (3)
- Geografi SMA X (3)
- Kimia SMA X (3)
- Kimia SMA XI (3)
- Kimia SMA XII (3)
- Kitty Wedding (1)
- Matematika SMA X (3)
- Matematika SMA XI (3)
- Matematika SMA XII (3)
- OSN Astronomi (1)
- OSN Biologi (1)
- OSN Ekonomi (1)
- OSN Fisika (1)
- OSN Kebumian (1)
- OSN Kimia (1)
- OSN Matemika (1)
- OSN Tik (1)
- Pend. Agama Islam SMA X (3)
- Pend. Agama Islam SMA XI (3)
- Pend. Agama Islam SMA XII (3)
- Penjaskes SMA X (3)
- Penjaskes SMA XI (3)
- Penjaskes SMA XII (3)
- Pkn SMA X (3)
- Pkn SMA XI (3)
- Pkn SMA XII (3)
- Sejarah SMA X (3)
- Sejarah SMA XI (3)
- Sejarah SMA XII (3)
- Seni budaya kelas XII (2)
- Sosiologi SMA X (3)
- Terselubung (3)
- TIK SMA XI (2)
- TIK SMA XII (2)
- TIK SMA XIII (1)
Blog archive
-
▼
2012
(125)
-
▼
Mei
(51)
- KilesKitty:)
- Program Linear
- BARISAN DAN DERET
- Aplikasi Gerak Harmonik Sederhana
- metebolisme dan katabolisme
- genetika
- ACCUSING, DENYING, APOLOGIZING
- Functional Skills
- Sejarah umum seni lukis
- MOZAIK
- ANCAMAN DISINTEGRASI BANGSA
- KONFLIK INDONESIA-BELANDA TAHUN 1945-1949
- PERKEMBANGAN POLITIK DAN EKONOMI SERTA PERUBAHAN M...
- Macromedia Kelas XII
- Pengenalan Grafis Berbasis Vektor dan Berbasis Bitmap
- Power Point
- pancasila Sebagai Dasar Negara (PKN XII)
- Sistem Pemerintahan
- Peranan pers dalam masyarakat demokrasi,
- senam lantai
- lempar lembing
- KARATE
- integral
- UNSUR-UNSUR GOLONGAN UTAMA
- SIFAT KOLIGATIF
- SEL ELEKTROLISIS
- Persamaan Gerak Harmonik Sederhana
- gerak harmonik
- genetika
- REPRODUKSI SEL
- metebolisme dan katabolisme
- DAI IK KA
- DAI SAN KA
- DAI GO KA
- A LETTER
- PIDATO
- LAPORAN HASIL SEMINAR
- surat lamaran
- KEHIDUPAN SEHARI-HARI
- Beberapa Contoh Ucapan Selamat dan Tegur Sapa dala...
- MUNAKAHAT
- IMAN KEPADA QADA DAN QADAR ALLAH SWT
- Pengertian Hari Kiamat
- Tik
- Matematika
- Kimia
- Kebumian
- Fisika
- Ekonomi
- Biologi
- Astronomi
-
▼
Mei
(51)
0 komentar:
Posting Komentar